
A garden of orchids: a generalized Harper equation at quadratic irrational frequencies

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 9071

(http://iopscience.iop.org/0305-4470/37/39/002)

Download details:

IP Address: 171.66.16.64

The article was downloaded on 02/06/2010 at 19:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/39
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 9071–9086 PII: S0305-4470(04)78164-0

A garden of orchids: a generalized Harper equation
at quadratic irrational frequencies

B D Mestel1 and A H Osbaldestin2

1 Department of Computing Science and Mathematics, University of Stirling,
Stirling FK9 4LA, UK
2 Department of Mathematics, University of Portsmouth, Portsmouth PO1 3HE, UK

E-mail: B.D.Mestel@maths.stir.ac.uk and andrew.osbaldestin@port.ac.uk

Received 19 March 2004
Published 15 September 2004
Online at stacks.iop.org/JPhysA/37/9071
doi:10.1088/0305-4470/37/39/002

Abstract
We consider a generalized Harper equation at quadratic irrational flux, showing,
in the strong coupling limit, the fluctuations of the exponentially decaying
eigenfunctions are governed by the dynamics of a renormalization operator on
a renormalization strange set. This work generalizes previous analyses which
have considered only the golden mean case. Projections of the renormalization
strange sets are illustrated analogous to the ‘orchid’ present in the golden mean
case.

PACS numbers: 64.60.Ak, 05.10.Cc, 75.30.Kz

1. Introduction

The generalized Harper equation [1]

(1 + α cos(2π(ω(i + 1/2) + φ)))ψi+1 + (1 + α cos(2π(ω(i − 1/2) + φ)))ψi−1

+ 2λ cos(2π(iω + φ))ψi = Eψi (1.1)

models an electron in a two-dimensional lattice in a transverse magnetic field in the limits of
strong (weak) potential and weak (resp. strong) field. The parameters ω, φ, and λ represent,
respectively, the magnetic flux per unit cell, the wavenumber of the plane wave in the transverse
direction and the ratio of the length of the unit cell in the direction of the vector potential and
its length in the transverse direction. The parameter α measures the next-nearest-neighbour
interaction strength, in whose absence we have the standard Harper equation [2]. (For earlier
studies of the spectrum of this model see [3–5].)

In the localized regime (λ > 1) of the standard Harper equation (α = 0), in the case of
golden mean flux (ω = (

√
5 − 1)/2), Ketoja and Satija [6] observe that the exponentially

decaying eigenfunctions possess universal self-similar fluctuations determined by the strong
coupling limit λ → ∞. Ketoja and Satija explain this phenomenon in terms of a universal
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Figure 1. Projections of the golden mean fundamental set (left) and orchid (right).

fixed point of a renormalization operator derived from their decimation scheme [7, 8]. Their
observations have been put a firm footing by explicitly constructing a fixed point of the
appropriate renormalization operator [9], and the generalization to quadratic irrationals of
the form ω = (

√
a2 + 4 − a)/2, a ∈ N, has also been achieved [10].

For the generalized Harper equation (1.1), the localized phase splits into two regions
displaying different phenomena. For λ > 1, α < 1, the fixed point of the standard Harper
equation governs the fluctuations. In this paper, we are concerned with the region λ � α � 1.
It appears [6] that the fluctuations are now governed by a renormalization strange set, which
Ketoja and Satija call the orchid (see figure 1) which, again, arises in the strong coupling limit
λ → ∞. We have recently shown how this orchid may be understood in terms of a shift map
on an appropriate symbol space [11]. In fact, the details of our work in [11] reveal that the
orchid is composed of three copies of a more basic object, which we call the fundamental set.
Figure 1 shows projections of these renormalization strange sets. Note that the orchid shown
here is a reflection of that shown in [6] due to a different sign convention.

The purpose of this paper is to generalize our work in [11] to irrationals of the form
ω = (

√
a2 + 4 − a)/2, a ∈ N. The goldenmean case corresponds to a = 1. The functional

recurrence is

tn(x) =
a−1∏
i=0

tn−1(−ωx − i)tn−2(ω
2x + aω), (1.2)

with appropriate initial conditions. We may write (1.2) as a first-order recurrence by setting
un(x) = tn−1(−ωx), so that we have the renormalization operator

R :

(
un−1(x)

tn−1(x)

)
�→

(
tn−1(−ωx)∏a−1

i=0 tn−1(−ωx − i)un−1(−ωx − a)

)
. (1.3)

We present renormalization strange sets akin to the Ketoja–Satija orchid for quadratic irrational
frequencies other than the golden mean. Specifically, setting ω = (

√
a2 + 4 − a)/2, a ∈ N,

and iterating the recurrence (1.2) for appropriate initial conditions, we find convergence
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Figure 2. Projection of the fundamental set/orchid in the case a = 2.
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Figure 3. Projections of the fundamental set (left) and orchid (right) in the case a = 3.

to strange-invariant sets. Scaled projections of these sets to the plane are illustrated in
figures 2 and 3.

In [11] we presented a highly detailed, rigorous analysis of the structure of the Ketoja–
Satija orchid in the golden mean case. We showed that its mathematical structure is given
essentially by the shift-map acting on a space of bi-infinite sequences of symbols 0 and 1
(factored by a partnering relation corresponding to the symmetries of the cosine function in
the generalized Harper equation (1.1)), together with dynamics on sign-pairs (±1, ±1). Our
aim in this paper is to present a similar structure analysis for the case of general a ∈ N. At
present our analysis is still conjectural, but it is likely that the methods used in [11] may be
adapted to give rigorous backing to our results.
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2. Derivation of the renormalization equations

We now recall from [10] the derivation of the renormalization functional recurrence, based on
the so-called decimation method of Ketoja and Satija [6–8].

Let a ∈ N be fixed and let ω ∈ (0, 1) have continued fraction expansion [0; a, a, . . . ].
Then ω = (−a + √

a2 + 4)/2, the positive root of the quadratic equation

ω2 + aω = 1. (2.1)

The rational convergents pn/qn satisfy pn = qn−1 = Gn where Gn+1 = aGn +Gn−1, G0 = 0,
G1 = 1. An important relation is the following:

Gnω − Gn−1 = −(−ω)n. (2.2)

Let us consider the portion of the localized phase, λ � 1, λ � α, for which α � 1, and for
which, by the result of Han et al [1], the exponential decay of the eigenfunction is given by
the characteristic exponent

γ = log


λ

α
+

√(
λ

α

)2

− 1


 . (2.3)

We write

ψi = e−γ|i|ηi, (2.4)

so that the generalized Harper equation (1.1) becomes, for i > 0,

e−2γ(1 + α cos(2π(ω(i + 1/2) + φ)))ηi+1 + (1 + α cos(2π(ω(i − 1/2) + φ)))ηi−1

+ 2e−γλ cos(2π(iω + φ))ηi = e−γEηi. (2.5)

The quantity ηi is the fluctuation of the wave function ψi from the exponential decay law
ψi ≈ e−γ|i|.

We now consider (2.5) in the strong-coupling limit λ → ∞, at the so-called band edge
E = 2λ. We note that λe−γ → α/2. Setting E = 2λ and taking the limit λ → ∞ gives the
recurrence

ηi−1 + α(cos(2π(iω + φ)) − 1)

1 + α cos(2π(ω(i − 1/2) + φ)))
ηi = 0. (2.6)

Following the method of Ketoja and Satija [6], we may define a so-called decimation by the
relation

ηi+Gn
= t̂n(i)ηi. (2.7)

Note that this decimation differs slightly from the one in [6], as we have set the coefficient of
ηi+Gn+1 to zero and we have changed the sign of t̂n. Consequently, equation (2.7) is only valid
in the strong-coupling limit λ → ∞.

A recurrence for tn may be obtained in the following way. We evaulate (2.7) with i set
equal to i, i + Gn, i + 2Gn, . . ., i + (a − 1)Gn, which gives the following set of equations:

ηi+Gn
= t̂n(i)ηi, (2.8)

ηi+2Gn
= t̂n(i + Gn)ηi+Gn

, (2.9)
...

ηi+aGn
= t̂n(i + (a − 1)Gn)ηi+(a−1)Gn

. (2.10)
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We now evaluate (2.7) at n − 1 with i set equal to i + aGn giving

ηi+Gn−1+aGn
= t̂n−1(i + aGn)ηi+aGn

. (2.11)

Eliminating ηi+Gn
, . . . , ηi+aGn

between these equations, we make use of the recurrence for the
Gn, to obtain ηi+Gn+1 = t̂n+1(i)ηi, where

t̂n+1(i) =

a−1∏

j=0

t̂n(i + jGn)


 t̂n−1(i + aGn). (2.12)

Setting the phase φ = 0, and evaluating (2.7) at n = 0 and n = 1, we obtain ηi = t̂0(i)ηi,
ηi+1 = t̂1(i)ηi, which, on comparing with (2.6) at i + 1, with φ = 0, gives

t̂0(i) = 1, t̂1(i) = 1 + α cos(2π(ω(i + 1/2)))

α(1 − cos(2π(i + 1)ω))
. (2.13)

Following [6] we now transform from the discrete variable i to a continuous variable x, by
writing x = (−ω)−n{iω} where {·} denotes the fractional part. The transformation must be
done with care since the definition of x depends on the index n of the function. We now write
tn(x) = t̂n(i), where tn is a periodic function of period ω−n. Then, as in [10], we have, for
n > 1,

tn+1(x) = tn+1((−ω)−(n+1){iω}) = t̂n+1(i) (2.14)

=

a−1∏

j=0

t̂n(i + jGn)


 t̂n−1(i + aGn) (2.15)

=

a−1∏

j=0

tn((−ω)−n{(i + jGn)ω})

 tn−1((−ω)−(n−1){(i + aGn)ω}) (2.16)

=

a−1∏

j=0

tn((−ω(−ω)−(n+1){iω + j(−(−ω)n)})



× tn−1(ω
2(−ω)−(n+1){(iω + a(−(−ω)n))}) (2.17)

=

a−1∏

j=0

tn(−ωx − j)


 tn−1(ω

2x + aω), (2.18)

as required. (In deriving this equation we have implicitly used the periodicity of the function
tn and (2.2).) The initial conditions for this recurrence are similar to those in [11] instead of
those in [10]. In fact, using the definition of the variable x and the periodicity of the cosine
function, we have

t0(x) = 1, t1(x) = 1 + α cos(2π(−ωx + ω/2))

α(1 − cos(2π(−ωx + ω)))
. (2.19)

Careful numerical iteration of the recurrence (1.2) with the initial condition (2.19) leads to
convergence to a renormalization strange set.
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3. Renormalization analysis

In this section we describe the mathematical structure that underlies the renormalization strange
sets described above. Our first step is to define the iterated function system that is important
to the analysis of the renormalization operator (1.3).

3.1. The iterated function system and the fundamental interval

We introduce the following notation. For i = 0, . . . , a, let

θi(x) = −ωx − i. (3.1)

Then we may rewrite the operator (1.3) as

R :

(
u(x)

t(x)

)
�→

(
t(θ0(x))∏a−1

i=0 t(θi(x))u(θa(x))

)
. (3.2)

The functions {θ0, θ1, θ2, . . . , θa} form an iterated function system (IFS), whose fixed-point
set is the interval I = [−ω − a, 1], and which we refer to as the fundamental interval. The
interval I splits into subintervals Ii given by I0 = [−ω, 1] and Ii = [−ω − i, −ω − i + 1] for
i = 1, . . . , a. Hence θ0(I) = I0 and also we have Ii ⊆ θi(I) for i = 1, . . . , a. We can therefore
define an inverse map G : I → I by

G(x) = θ−1
i (x) = −ω−1x − iω−1 for x ∈ Ii. (3.3)

Then G(Ii) = I0 ∪ · · · ∪ Ia−1 for i = 1, . . . , a and G(I0) = I; see figure 4 which shows G

for the case a = 2. The functions u and t are defined on Ia = [−ω − a, −ω − a + 1] and
I0 ∪ · · · ∪ Ia−1 = [−ω − a + 1, 1], respectively.

The significance of the function G is that it governs the dynamics of the zeros of the
functions u and t on their respective domains on the fundamental interval I. In turn, the full
dynamics of the functions u and t is essentially determined by their zeros on I.

3.2. Shift spaces and partners

A key goal of dynamical systems theory is to find well-understood models of chaotic systems
that elucidate their structure. Indeed, the archetypal model of such a chaotic system is
a Bernoulli shift on a space of symbol codes. The structure of the map G as illustrated in
figure 4 suggests that a sub-shift of the Bernoulli shift-space of symbols 0, . . . , a is a suitable
model for the orchid. This is indeed the case although, as we shall see below, one must also
take into account the symmetry of the cosine function in the initial condition (2.19) and the
dynamics of the signs of the functions u and t.

Let us first of all introduce the codes which form the basis of our construction. For fixed
a ∈ N we define the code space


 = {c = (ci)i∈Z : ci ∈ {0, 1, . . . , a}, ci = a ⇒ ci−1 = 0}. (3.4)

This a space of bi-infinite codes of symbols {0, . . . , a} with the single restriction that the symbol
a must be preceded by the symbol 0. The reason for this restriction can be seen easily from
the map G. The symbols 0, . . . , a correspond to the subintervals I0, . . . , Ia of the fundamental
interval I, and the map G determines the possible transitions between symbols. Indeed, the
symbol i is permitted to be followed by j if, and only if, Ij ⊆ G(Ii). Since the image under G

of each subinterval Ii contains Ij for all j = 0, . . . , a−1, there are no restrictions needed in this
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Figure 4. The function G in the case a = 2.

case. However, since only G(I0) covers Ia, the symbol a must be preceded by the symbol 0 as
claimed. In [11], the codes of the symbols 0 and 1 were restricted so that no two consecutive
symbols 1 were permitted. We note that in the case a = 1 our condition is equivalent to that
in [11]. Let us denote by σ the left-shift map, defined for a code c = (ck)k∈Z by σ(c)k = ck+1.
Then, equipping 
 with the standard metric, we have that σ is a homeomorphism of 
.

We now introduce a map en : 
 → I which connects directly the code space 
 with the
map G. For n ∈ Z let en : 
 → [−ω−1, 1] denote the evaluation map at time n given by

en(c) = −
∞∑

k=n

ck(−ω)k−n. (3.5)

Then, clearly,

en(σ(c)) = −
∞∑

k=n

ck+1(−ω)k−n = −
∞∑

k′=n+1

ck′(−ω)k
′−(n+1) = en+1(c). (3.6)

Writing e for the map of sequence spaces e : 
 → [−ω−1, 1]Z given by e(c)n = en(c), relation
(3.6) becomes

e(σ(c)) = σ(e(c)), (3.7)

where we use σ on the right-hand side of this equation to denote the shift map on the space of
sequences [−ω−1, 1]Z where [−ω−1, 1] ⊆ R.

The key property is that the image e(
) is precisely the set of full orbits of the map G

defined above. Indeed, away from the subinterval boundaries,

en(σ(c)) = G(en(c)). (3.8)

3.3. Partners and structures

In this section we introduce an operation on codes in 
 which we refer to as partnering. The
purpose of partnering is to take into account the symmetries of the zeros of the initial conditions
(2.19). These symmetries derive from the symmetry of the cosine function about π.
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The partnering operation may seem somewhat strange and ad hoc, but in fact is related to
the following identities satisfied by ω.

From the defining equation of ω,

ω2 + aω − 1 = 0, (3.9)

repeatedly multiplying through by −ω and adding itself readily gives the identities

1 = aω + ω2, (3.10)

1 = (a + 1)ω − (a − 1)ω2 − ω3, (3.11)

1 = (a + 1)ω − aω2 + (a − 1)ω3 + ω4, (3.12)

1 = (a + 1)ω − aω2 + aω3 − (a − 1)ω4 − ω5, (3.13)
...

These identities are equivalent to the observation that 1 is a fixed point of the contractions

κ2(x) = aω + ω2x, (3.14)

κ3(x) = (a + 1)ω − (a − 1)ω2 − ω3x, (3.15)

κ4(x) = (a + 1)ω − aω2 + (a − 1)ω3 + ω4x, (3.16)

κ5(x) = (a + 1)ω − aω2 + aω3 − (a − 1)ω4 − ω5x, (3.17)
...

We now define a substitution operation S̃ on bi-infinite codes c ∈ 
 as follows. Firstly c is
split into finite blocks beginning with a single 0, i.e. into blocks of the form

0d0d1 . . . dk0r, (3.18)

where k � 0, dj �= 0, j = 0, . . . , k, r � 0. Further split the trailing run of 0s so that this block
is written

0d0d1 . . . dk0(00)(r−1)/2, r odd, (3.19)

0d0d1 . . . dk(00)r/2, r even. (3.20)

On the resulting elementary blocks 00, 0d0d1 . . . dk, 0d0d1 . . . dk0, the operation S̃ is then
defined as follows:

S̃(0d) = 0(a − d), (3.21)

S̃(0d0d1) = 0(a + 1 − d0)(a − 1 − d1), k � 1, (3.22)

S̃(0d0d1 . . . dk−1dk) = 0(a + 1 − d0)(a − d1) . . . (a − dk−1)(a − 1 − dk), k � 2, (3.23)

S̃(0d0d1 . . . dk0) = 0(a + 1 − d0)(a − d1) . . . (a − dk)(a − 1), k � 1. (3.24)
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The operator S̃ preserves the number of digits and satisfies

S̃(AB) = S̃(A)S̃(B) (3.25)

for any (finite or infinite) words A, B.
With the meaning that the α-digit complement of d ∈ {0, 1, . . . , α} is d̄ = α − d, so that

d + d̄ = α, the action of S̃ is to take digit complements according to the elementary block
structures

0a, (3.26)

0(a + 1)(a − 1), (3.27)

0(a + 1)a(a − 1), (3.28)

0(a + 1)aa(a − 1), (3.29)

...

For example, suppose a = 5. Split

c = . . . (011234)(05)(00)(03412330)(00)051230 . . . (3.30)

as indicated. Then

S̃(c) = . . . (054320)(00)(05)(03143224)(05)S̃(051230 . . .). (3.31)

We have the following special cases.

(i) c begins with an infinite string . . . d−2d−1d0 containing no 0. In this case we substitute
this string to . . . (a − d−2)(a − d−1)(a − 1 − d0).

(ii) c ends with an infinite string d0d1d2 . . . containing no 0. Then in this case we substitute
this string to (a + 1 − d0)(a − d1)(a − d2) . . . .

(iii) c begins with the string 0∞. Then we write c = (00)∞0d0d1 . . ., d0 �= 0 and substitute
the string to (0a)∞S̃(0d0d1 . . .).

(iv) c ends with the string 0∞. We have an ambiguity in this case. When c = . . . d−2d−1d00∞,
with d0 �=0, we may write both c = . . . d−2d−1d0(00)∞ and c = . . . d−2d−1d00(00)∞.
Then, respectively we have S̃(c) = S̃(. . . d−2d−1d0)(0a)∞, S̃(c) =S̃(. . . d−2d−1d00)(0a)∞.
In the case d−1 = 0, so that c = . . . d−20d00∞ then we could write both
S̃(c) = S̃(. . . d−2)0(a − d0)(0a)∞ and S̃(c) = S̃(. . . d−2)0(a − d0)(a − 1)(0a)∞. When
d−1 �= 0, then we could write both S̃(c) = . . . (a − 1 − d0)(0a)∞ and S̃(c) =
. . . (a − d0)(a − 1)(0a)∞.

Cases (i) and (ii) are only possible when a > 1.
For simplicity, we discard from 
 these special cases and any code which may be obtained

from them by using the partnering operation. By so doing, we discard a set that is nowhere
dense in the standard topology on 
. We shall use the notation c̃ to denote the partner code
S̃(c).

We next define the sum map S : 
 → {1, −ω− (a−1), −ω−a}Z, the space of bi-infinite
sequences with terms taken from {1, −ω − (a − 1), −ω − a}. S is defined in terms of the
elementary block structures given above. Let c = (ck)k∈Z be a code with partner c̃. We divide
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c and c̃ into blocks and define S on the elementary block structures (3.26)–(3.30) as follows:

S(0a) = 1(−ω − a), (3.32)

S(0(a + 1)(a − 1)) = 1(−ω − a)(−ω − (a − 1)), (3.33)

S(0(a + 1)a(a − 1)) = 1(−ω − a)(−ω − (a − 1))2, (3.34)

S(0(a + 1)aa(a − 1)) = 1(−ω − a)(−ω − (a − 1))3, (3.35)
...

extending S to the whole of c. By construction, we have that S(c) = S(c̃) and S(σ(c)) =
σ(S(c)).

We have the following result which specifies precisely how y = e(c) and ỹ = e(c̃) are
related, and explains our terminology ‘sum map’.

Proposition 1. Let y = e(c) and ỹ = e(c̃). Then y + ỹ = S(c), where, of course, the sum is
to be calculated termwise.

Proof. To prove this proposition, let us consider a binfinite code c and its partner code c̃, given
by the above substitution rules. We write yk = ek(c), ỹk = ek(c̃) and set Sk = yk + ỹk. Let
us write the codes in terms of the block structures explained above. Then we claim that if
n ∈ Z starts a block (i.e. cn = c̃n = 0, the first zero of a block), then yn + ỹn = 1. Indeed,
suppose the block starting at n is of total length j1 � 2. Then we have Sn = κj1(Sn+j1) so that
|Sn − 1| = |κj1(Sn+j1) − κj1(1)| = ωj1 |Sn+j1 − 1|. Since the next block of total length j2 � 2
starts at n + j1, we have, similarly, |Sn − 1| = ωj1+j2 |Sn+j1+j2 − 1|. Continuing in this way,
and noting that the Sk are bounded, gives in the limit Sn = 1, as claimed.

We now consider k ∈ Z within a block. Consider an elementary block structure and let
n ∈ Z correspond to the start of the following block. For the elementary block structure 0a of
length 2, we have Sn−1 = −a − ωSn = −a − ω = θa(1), since Sn = 1. Thus S(0a) = 1(−ω−a)

corresponds to the sum y + ỹ on the block.
Similarly, for the elementary block structure 0(a + 1)(a − 1) of length 3, we have

Sn−1 = − (a − 1) − ωSn = − ω − (a − 1) = θa−1(1), and Sn−2 = − (a + 1) − ωSn − 1 =
θa+1(−ω − (a − 1)) = − ω − a, so that S(0(a + 1)(a − 1)) = 1(−ω − a)(−ω − (a − 1))

corresponds again to the sum y + ỹ on the block. (Here we have defined θa+1(x) =
−ωx − (a + 1).)

Finally, for an elementary block structure 0(a + 1)aj(a − 1) of length j + 3 for j � 1, we
have Sn−1 = θa−1(1) = −ω − (a − 1), Sn−1−j = θa(−ω − (a − 1)) = −ω − (a − 1), since
−ω − (a − 1) is a fixed point of θa. Finally, Sn−1−j−1 = θa+1(−ω − (a − 1)) = −ω − a, as
before, so that S(0(a + 1)aj(a − 1)) = 1(−ω − a)(−ω − (a − 1))j+1 corresponds again to
the sum y + ỹ on the block.

This completes the proof of the proposition. �
4. Construction of the orchid

In this section we outline our model of the orchid in the general a case. Our basic tool is an
embedding E of the space 
 into a space F of function pairs (u, t). The rigorous construction
of this embedding in the case a = 1 is given in [11], and, indeed, occupies a considerable
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part of that paper. We shall content ourselves here with a statement of the properties of the
embedding map.

To simplify notation let us introduce the convention that binary and unary operations on
pairs of functions are defined coordinatewise, so that, for example, for function-pairs (u1, t1)
and (u2, t2), the product (u1, t1)(u2, t2) denotes the function-pair (u1t1, u2t2).

The philosophy given in section 3.1 is that the zeros of the function-pair (u, t) on I

determine the long-term dynamics of the pair (u, t) and that the dynamics of the zeros
themselves are governed by the map G. It is therefore not unexpected that the crucial property
of the embedding E is that it takes a code c and maps it to a function pair that have zeros as the
value of the evaluation map e0(c). Indeed, our claim is that there is a map E : 
 → F , relating
the dynamics of R to that of the shift map σ on 
, satisfying E(c) = (u, t) = h0(c)(u1, t1)

where

h0(c) =



(y0 − x, y0 − x), c−1 = 0,

(1, y0 − x), c−1 �= 0,
(4.1)

and u1, t1 are functions with u1(x) > 0 for x ∈ Ia and t1(x) > 0 for x ∈ I0 ∪ · · · ∪ Ia−1 and
y0 = e0(c).

Let us define the following map κc on sign-pairs. For c ∈ {0, 1, . . . , a}, define
κc: {−1, +1}2 → {−1, +1}2 by

κc(s
u, st) = (−st , −(−1)c(st)asu). (4.2)

It is easy to check that κc is invertible with inverse κ−1
c (su, st) = (−(−1)c+a(su)ast , −su).

The principal property of the map E is that it is a (semi)conjugacy to the renormalization
operator R, up to a change of sign. Precisely, the map E satisfies the following equation for a
code c = (ck)k∈Z:

R(E(c)) = κc0(+1, +1)E(σ(c)). (4.3)

The set E(
) does not correspond to the orchid, because for c ∈ 
, the function-pair E(c) does
not have the correct zero structure. To rectify this problem we introduce a map β : 
 → F ,
defined by

β(c) = E(c)E(c̃). (4.4)

Corresponding to equation (4.3) there is a quasiconjugacy relation for the map β, but with a
sign-pair evolution given by the map on sign-pairsLb, given as follows. Forb ∈ {0, 1, . . . , a+1}
define Lb : {−1, +1}2 → {−1, +1}2 by

Lb(s
u, st) = (st , (−1)b(st)asu). (4.5)

As before, it is easy to check that Lb is invertible with inverse L−1
b (su, st) = ((−1)b(su)ast , su).

Then the quasiconjugacy relation for the map β is

R(β(c)) = Lb0(+1, +1)β(σ(c)), (4.6)

where b0 is the 0th term of the sequence b = c + c̃.
Equation (4.6) shows the dynamics of R can be modelled, up to a change of sign, by the

shift map on 
. We call the embedded set β(
) the fundamental set of the orchid. Examples
of these sets are shown in figures 2 and 3.

We observe that β(c) = β(c̃) for all c ∈ 
 and we may therefore define map on the
quotient space 
′ obtained by identifying a code c with its partner code c̃.
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Figure 5. Sign transitions for a odd.

Figure 6. Sign transitions for a even.

The orchid is itself made up of one or more copies of the fundamental set. We now explain
the structure of the orchid set in terms of the fundamental set and the dynamics on the sign-pairs
given by the map Lb.

For c ∈ 
 and (su
0 , st

0) ∈ {−1, +1}2 we define, for n ∈ Z, the sign-pair (su
n, st

n) =
(su

n(c), s
t
n(c)) by the condition

Lbn
(su

n, st
n) = (su

n+1, st
n+1) (4.7)

for all n ∈ Z, where, as before, b = c + c̃.
The transition diagrams illustrating the dynamics of a sign-pair (su, st) ∈ {−1, +1}2 under

the maps Lb for c ∈ 
 are shown in figures 5 and 6. The sign-pairs in boxes correspond to the
start of a block in the definition of the partner codes in section 3.3. The map Lb is applied to the
sign-pair for each term in the block. The arrows represent transitions to other sign-pairs that
may occur at the end of the block; the precise transition that occurs depends on the structure of
the block. From these diagrams, it is evident that for a odd, the four possible sign-pairs split
into two components, both invariant under the transitions. One component is a single sign-pair
and the other component consists of three sign-pairs. This structure explains the threefold
symmetry observed in the orchid for odd a (see figures 1 and 3). On the other hand, for a even,
the sign-pairs split into three invariant components, one consisting of two sign-pairs and the
other two consisting of a single sign-pair each.

In order to determine which parts of these transition diagrams are relevant for the
renormalization strange set for the generalized Harper equation, we must examine the zeros
and poles of the initial condition (2.19).

We observe first that we may separate out the numerator and the denominator of t1 in
(2.19). The denominator has zeros of order 2 at x = 1 and x = −ω − (a − 1), as may readily
be checked. This give poles of order 2 for t1. The function pair (u2, t2) = R(u1, t1) consists
of a function u2 with a pole of order 2 at −ω − a and a function t2 with poles of order 2 at 1
and −ω − a. This configuration of poles is fixed under R, leading to the function-pair (un, tn)
converging to a fixed-point pair (u, t) with the same configuration of poles.

The numerator of t1 gives the orchid-like structure, and we now consider the zeros of t1.
Let α > 1, so that we may write α = 1/ cos(2πr), for 0 < r < 1/4. The roots of t1(x) in
I are x± = −(1/2 ∓ r − ω/2)/ω and (u1(x), t1(x)) = (1, (x+ − x)(x− − x))(u1(x), t1(x))

where u1, t1 are positive on Ia and I0 ∪ · · · ∪ Ia−1, respectively. Thus, we have the sign-pair
(su, st) = (+1, +1). We note that x+ + x− = −ω − (a − 1). This means that the initial
condition is not at the start of a block, and one must iterate the recurrence in order to see which
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Figure 7. An invariant set with twofold symmetry that may occur in the case a = 2.

part of the transition diagram the initial condition corresponds to. The cases of odd and even
a are different. For a odd, we obtain the full threefold symmetrical orchid, while for a even,
the orbit is restricted to a single copy of the fundamental set.

To understand the reason for this, we observe that, since x+ + x− = −ω − (a − 1), the
initial condition (u1, t1) corresponds to one of the final j + 1 positions in an elementary block
structure of the form 0(a + 1)aj(a + 1) of length j + 3 for j � 0. Let us now consider the
action of the map Lb on the sign-pair (+1, +1) for b = a, for k iterations, 0 � k � j and
b = a + 1 for a final, single iteration to bring the function pair to the start of the following
block.

For odd a > 1, the sign-pair (+1, +1) cycles through the sequence (+1, +1),
(+1, −1), (−1, +1) for k iterations of the map La. The final iteration with the map La+1

maps this sequence to (+1, +1), (−1, −1), (+1, −1), one of which will be the sign-pair at the
start of the next block. Referring to figure 5, we see that this corresponds to the invariant
component with three sign-pairs and, hence, we have a threefold symmetry in this case, as for
the golden-mean orchid.

However, for even a > 1, the sign-pair (+1, +1) is unaffected by the maps La, but
La+1(+1, +1) = (+1, −1), which is the signpair at the start of the next block. Referring to
the transition diagram in figure 6, we see that we obtain a single copy of the fundamental set.

Although the initial condition for the generalized Harper equation gives a single copy of
the fundamental set for even a, by appropriate choice of the initial sign-pair one can obtain a
renormalization strange set with twofold symmetry, as illustrated in figure 7.

5. Construction of the map E

The construction of the map E follows standard methods for the construction of conjugacies,
in that the map is obtained as a limit of backward and forward iterations.

Let c ∈ 
 and let h−k(c) = h0(σ
−k(c)), where h0 is given by equation (4.1). We also

choose a sign-pair (su
−k, st

−k) = κ−1
c−k

◦ · · · ◦ κ−1
c−1

(+1, +1). We define the map

E(c) = lim
k→∞

RkP(su
−k, st

−k)h−k(c), (5.1)



9084 B D Mestel and A H Osbaldestin

where P is the projection operator defined below. We remark that the proof of convergence
(given in [11] for the golden-mean case) is rather lengthy.

We now give details of the projection P . The renormalization transformation R is not
a contraction on the full space of function pairs; indeed its linearized version has two non-
contracting directions. Thus, in order to obtain convergence for smooth functions will shall
need to project down to the stable manifold.

Defining

�n(U, T ) =
∫ 1−ω−1

−ω−1
U(n)(x) dx +

∫ 1

1−ω−1
T (n)(x) dx, (5.2)

v0 = 1

ω + ω−1
(ω, 1), (5.3)

v1 = 1

ω + ω−1
(ωx − ω − (a − 1)/2, x + ω + (a − 1)/2), (5.4)

the following properties may be verified:

1. �n(Ra(U, T )) = (−1)nωn−1�n(U, T ) for n = 0, 1;
2. �0(v0) = 1, �0(v1) = 0, �1(v0) = 0, �1(v1) = 1.

Let us introduce the following projection operator P , defined by

P(u, t) = (u, t) exp(−�0(log|(u, t)|)v0 − �1(log|(u, t)|)v1). (5.5)

Then, by a straightforward calculation, one may show that P satisfies the following properties:

1. P2 = P ;
2. PR = RP ;
3. P((u1, t1)(u2, t2)) = P(u1, t1)P(u2, t2).

The initial condition (u1, t1) satisfies P(u1, t1) = (u1, t1), as may be readily verified by direct
calculation, using the integral identity∫ A+2π/B

A

log|1 + B cos(Cx + D)| dx = 2π

C
log(|B|/2) (5.6)

for A, B, C, D ∈ R with |B| � 1, C > 0, to show �0(log|(u1, t1)|) = 0, and taking
appropriate limits to show �1(log|(u1, t1)|) = 0. Thus (u1, t1) lies on the stable manifold
of the renormalization strange set.

We remark that the operator RP may also be used to construct the orchid numerically,
although care must be taken to preserve the symmetry of the zero set. Such a method was used
to obtain the projections shown in figures 1–3.

6. Discussion

In this paper we have considered the generalized Harper equation for quadratic irrationals
ω = (

√
a2 + 4 − a)/2 for general a ∈ N. We have presented new orchid-like renormalization

strange sets for each value of a and have given model structure for these sets in terms of bi-
infinite codes for the fundamental set. The orchid itself is constituted of one or more copies
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of the fundamental set, with the precise number of copies emerging from an analysis of the
dynamics on the sign-pairs, as given by the transition diagrams (figures 5 and 6).

The structure of the orchid depends in an essential way on the symmetries of the generalized
Harper equation (1.1) and, in particular, on those of the cosine function. It is these symmetries
that lead to the partnering operation on codes and the relation on the zeros of the function
pairs β(c). If one destroys the symmetries then, likewise, the orchid is destroyed and is
replaced by a different strange set. Indeed, when calculating the orchid numerically, care must
be taken with round-off error in the zeros of the function pairs. Since the chaotic map G

governs the dynamics of these zeros, round-off error grows quickly leading to nonconvergence
to the orchid. Thus, the universality class for the orchid is restricted to those quantum models
displaying the same symmetries as the generalized Harper equation model (1.1). Moreover,
the existence of non-stable eigendirections for the operator Ra implies further conditions on
a function pair (u, t) to converge to the orchid. These conditions are satisfied for the initial
conditions derived from the generalized Harper equation model, but it is clearly a moot point
to what extent one should refer to the orchid as a renormalization strange ‘attractor’.

The ideas and techniques in this paper are likely to find application in other problems
in the field. As first pointed out by Bondeson et al [12], there is an equivalence between
the transition to the localized state in quasiperiodic Schrödinger equations and the onset of
a strange nonchaotic attractor in quasiperiodically forced nonlinear systems; see also [13].
Kuznetsov et al [14] have given a renormalization analysis of the onset of a strange nonchaotic
attractor. We anticipate that our work in this paper will shed considerable light on this related
problem and, in particular, we expect that the numerical results in [14] can be generalized and
put on a rigorous foundation. Rigorous renormalization analyses of correlations in strange
nonchaotic attractors [15] and in quasiperiodically forced two-level system [16] have recently
been completed [17, 18].

The case of more general irrational ω is an important next step in the work in this area.
It is clear that the work presented here may be readily generalized to all quadratic irrational
ω, i.e. to all those ω having periodic tails in their continued-fraction expansions. A harder
problem is the extension of the theory to more general irrational frequencies. It is likely that
for general ω the functions tn (and thus the fluctuations ηi) move chaotically between the
orchids presented here for different a, with the renormalization of ω governed by the Gauss
map γ(x) = 1/x − [1/x]. This is analogous to other quasiperiodic renormalizations such as
critical circle and area-preserving maps.

The analysis for general ω presents a considerable challenge for future work in this field.
Let us conclude with a few remarks concerning the potential physical application of the

theory, for, in common with many other areas of mathematical physics, it is questionable to
what extent the phenomena described here arise in an actual physical system.

First, the generalized Harper equation is itself a discrete approximate model of an idealized
chain of atoms in a sinusoidal applied potential, in which only nearest- and next-nearest-
neighbour interactions are considered. Perturbation of the model destroys the symmetries of
the cosine function and, thus, the global structure of the strange set. Secondly, the structures
presented here correspond to frequencies taken from a special class of quadratic irrationals,
which themselves constitute a measure-zero subset of all frequencies. Moreover, they govern
asymptotic correlations in the fluctuations in an exponentially decaying wavefunction, and
only between certain atom sites related by the rational convergents to the frequency.

Of course, these same criticisms apply in many other branches of physics as well, and
indeed the whole of science abounds with non-generic models and theories, which despite
their unreasonableness, are remarkably successful. Moreover, in many quasiperiodic systems
quadratic irrationals (and indeed the golden mean, in particular) seem to dominate the
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dynamical behaviour. Furthermore, experimentalists have been quite successful in testing
other renormalization theories that are frequency-dependent (see e.g. [19]), and indeed it may
be possible to conduct similar experiments in this case. Moreover, the results in this paper are
likely to carry over to more general frequency.

More problematic may be the difficulty of accurately measuring the fluctuations in
exponentially decaying wavefunctions, which themselves can only be inferred by probabilities
obtained in repeated experiments. However, we expect the strong-coupling results of our
analysis here to be mirrored in the fat critical phase of the model (see [6]), in which the
fluctuation are in the wavefunction itself. In addition, of course, it may be that a deeper
analysis of the localized phase could identify macroscopic properties of materials that are
influenced by the correlations considered here, but at present this is pure speculation.
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